Search results for "PARTON DENSITIES"

showing 4 items of 4 documents

Re-weighting at the LHC: the p–Pb data impact

2016

Abstract In this work we present selected results of a comprehensive analysis of the medium modifications in proton-lead LHC Run I data, and discuss the implications on different sets of nuclear parton densities. We find that the nuclear environment has a non-negligible relevance on the experimental results. We incorporate the information from Run I into the current nuclear densities and provide novel sets of nPDFs that will be useful for future predictions.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Colliderta114nuclear parton densities010308 nuclear & particles physicsNuclear Theoryproton-lead collisionsParton01 natural sciencesNuclear environmentWeightingNuclear physics0103 physical sciencesRelevance (information retrieval)LHCNuclear Experiment010306 general physicsNuclear Physics A
researchProduct

Confronting the impact parameter dependent JIMWLK evolution with HERA data

2018

The small-$x$ evolution of protons is determined from numerical solutions of the JIMWLK equations, starting from an initial condition at moderate $x$ for a finite size proton. The resulting dipole amplitude is used to calculate the total reduced cross section $\sigma_r$ and charm reduced cross section $\sigma_{rc}$, as well as diffractive vector meson production. We compare results to experimental data from HERA and discuss fundamental problems arising from the regime sensitive to non-perturbative physics. We emphasize that information on the gluonic content of the proton, gluon spatial distributions and correlations over wide ranges in $x$, which can in principle be constrained by our stud…

Physicsparton densitiesParticle physicsprotonitta114protons010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyNuclear TheoryHERAhiukkasfysiikka7. Clean energy01 natural sciencesGluonColor-glass condensateHigh Energy Physics - Phenomenology0103 physical sciencesContent (measure theory)Saturation (graph theory)High Energy Physics::ExperimentProduction (computer science)Vector mesonImpact parameter010306 general physicsNuclear ExperimentPhysical Review D
researchProduct

DETERMINATION OF ALPHA-S FROM THE SCALING VIOLATION IN THE FRAGMENTATION FUNCTIONS IN E+E- ANNIHILATION

1993

A determination of the hadronic fragmentation functions of the Z0 boson is presented from a study of the inclusive hadron production with the DELPHI detector at LEP. These fragmentation functions were compared with the ones at lower energies, thus covering data in a large kinematic range: 196 less-than-or-equal-to Q2 less-than-or-equal-to 8312 GeV2 and x (= p(h)/E(beam)) > 0.08. A large scaling violation was observed, which was used to extract the strong coupling constant in second order QCD: alpha(s)(M(Z)) = 0.118 +/- 0.005. The corresponding QCD scale for five quark flavours is: LAMBDA(MS)(5)BAR = 230 +/- 60 MeV.

QuarkNuclear and High Energy PhysicsParticle physicsHADRONIC-Z-DECAYS; JET PRODUCTION-RATES; LUND MONTE-CARLO; LEADING ORDER; QUANTUM CHROMODYNAMICS; PERTURBATIVE QCD; PARTON DENSITIES; RESONANCE; SCATTERING; PHYSICSLUND MONTE-CARLOHigh Energy Physics::LatticeElectron–positron annihilationHadronElementary particlePARTON DENSITIES01 natural sciencesNuclear physicsPHYSICS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PERTURBATIVE QCDSCATTERING010306 general physicsNuclear ExperimentBosonQuantum chromodynamicsPhysicsCoupling constantAnnihilationQUANTUM CHROMODYNAMICS010308 nuclear & particles physicsJET PRODUCTION-RATESLEADING ORDERHigh Energy Physics::PhenomenologyRESONANCEFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentHADRONIC-Z-DECAYSPHYSICS LETTERS B
researchProduct

Quark and gluon distributions and $\alpha_{s}$ from nucleon structure functions at low $x$

1993

Abstract The Q2 dependence of the structure functions F2p and F2d recently measured by the NMC is compared with the predictions of perturbative QCD at next-to-leading order. Good agreement is observed, leading to accurate determinations of the quark and gluon distributions in the range 0.008 ⩽ × ⩽ 0.5. The strong coupling constant is measured from the low x data; the result agrees with previous determinations.

QuarkNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::Latticedeep inelastic scattering: muon deuteronmuon deuteron: deep inelastic scatteringPARTON DENSITIESJet (particle physics)530CROSS-SECTIONSNuclear physicsnumerical calculations: interpretation of experimentsstrong interaction: coupling constant90: 280 GeVDEEP INELASTIC-SCATTERING; LEADING ORDER; QUANTUM CHROMODYNAMICS; PERTURBATION-THEORY; PARTON DENSITIES; CROSS-SECTIONS; FREEDOM; MSBAR; JET; NMCdeep inelastic scattering: muon pp: structure functionNMCCoupling constantQuantum chromodynamicsPhysicsQUANTUM CHROMODYNAMICSLEADING ORDERHigh Energy Physics::Phenomenologydeuteron: structure functiongluon: momentum spectrumperturbation theory: higher-orderPerturbative QCDDeep inelastic scatteringquark: momentum spectrumFREEDOMGluondependence: momentum transferJETMSBARmuon p: deep inelastic scatteringPERTURBATION-THEORYDEEP INELASTIC-SCATTERINGHigh Energy Physics::Experimentcoupling constant: strong interactionNucleonParticle Physics - Experiment
researchProduct